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Behavior 
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A previously introduced Landau "potential" for the description of the basic 
features of the two-component Rayleigh-B~nard problem is shown to be en- 
dowed with the relevant properties of the classical Landau singular free energy 
used in the study of equilibrium tricritical phenomena. Predictions of relevance 
to experiments on convective instability are also given. 
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1. LANDAU POTENTIAL FOR THE TWO-COMPONENT 
RAYLEIGH-BENARD PROBLEM 

With the use of a L a n d a u  "potent ia l"  a rather simplified and  compact  
description of the basic features of the rmohydrodynamic  instabil i ty and  

natural  convection can be achieved. (1-4) Moreover,  it turns out  that on 
quant i ta t ive grounds  all theoretical predictions agree quite satisfactorily 

with the presently available experimental  data. 3 The just i f icat ion for such 
an  agreement  lies in the fact that in B6nard convection, as in some other 
convective instabilities, correlation lengths are of true macroscopic size, 
e.g., they take the d imens ion  of the sample and  not  merely a few thousand  
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angstroms. Thus, side boundary effects prevent one from seeing nonclassical 
corrections. 4 On the other hand, corrections to the Landau phenomeno- 
logical description simply improve the results in extremely small regions or 
lead to negligible corrections, at least in the simplest B6nard problemJ 3'6) 

In the present note we consider the model problem of a horizontal 
two-component liquid layer heated from below and discuss the behavior to 
be expected in the neighborhood of a "tricritical" point. (2) This designation 
has been introduced following ideas from equilibrium statistical mechanics 5 
and it denotes a point where three coexisting "phases" become identical. 
Although the tricritical point in the two-component B6nard problem may 
very well not be easily accessible to experiment, 6 the present study yields 
useful light about the behavior to be expected every time that lines of 
subcritical instability (hard-mode, first-order transition) end at points of 
exchange of stabilities (soft-mode, continuous transition). This is also the 
case for homeotropic nematic liquid layers heated from below (9)'7 or every 
time that a non-Boussinesquian fluid property is taken into consider- 
ation.(3~ 

Following the notation introduced in an earlier paper, (2) the model 
problem under consideration leads to the study of the following Landau 
"potential ''8 

I 4 ( l + r 2 ) - R  V4+ 6 + g  - -  ( 1 )  

which here corresponds to the classical Landau free energy used in equilib- 
rium phase transitions. The following notation has been introduced: R is 

4 For a comprehensive theoretical background see Graham. (6~ 
5 Our work follows in the spirit of ideas developed for metamagnets,  helium mixtures, and the 

laser. See Refs. 7. General definitions and notation can be found in the pioneering work of 
Griffiths; see, for instance, Ref. 8. 

6 Actually this will not be the case with experiments using macromolecular solutions, or in the 
nematic case discussed below where the parameters can be varied at will. 

7 For experimental results and a truncated mode approach see Ref. 10. 
8 The full Navier-Stokes,  Fick-Soret,  and Fourier equations cannot be derived from a true 

potential with an unrestricted variational principle behind them. It is only a truncated version 
of these equations, as discussed in Refs. 2 and 4, that can be made to derive from a potential. 
An irrelevant constant  term has been omitted in (1). When non-Boussinesquian properties or 
any other supplementary symmetry-breaking mechanisms are incorporated the potential 
takes account of them with odd powers in the order parameter. The case discussed here 
corresponds to a homogeneous approximation in the case of stress-free, permeable, and 
heat-conducting boundaries. None of the approximations is conceptually important. Inho- 
mogeneities, i.e., spatial variations of the convective (ordered) state, are incorporated by 
generating a Landau-Ginzburg  functional, as discussed in Refs. 1, 4, and 5. 
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the Rayleigh number (a dimensionless measure of the thermal gradient 
across the layer), S is the Soret separation parameter (a dimensionless 
measure of the strength of Soret separation due to the thermal gradient), 
and r is the Lewis number (a dimensionless ratio between the mass and 
heat diffusivities which is of order 10 -2 in standard liquid mixtures). V is 
the unknown and plays the role of order parameter in the problem (it 
corresponds to the amplitude of the relevant convective velocity field). 

For later convenience we write (1) fn the following manner: 

where 

dp = �89 2 + t B ( R , S , r ) V 4  + ~ C ( R , S , r ) V  6 (2) 

A ( R , S , r )  = (64/3)~r4rZ[(27/4)~r 4 - R ( S  + 1 + S / r ) ]  (3) 

B ( R , S , r )  = (8/9)[(27/4)~r4(1 + r 2) - R] (4) 

C ( R , S , r )  = 1 (5) 

The Lewis number can be taken as a parameter. For a given value r the 
coordinates of the "tricritical point" are obtained by setting A = B = 0. We 
have 

R* = (27/4)qr4(1 + r2), S* = - r 3 / ( 1  + r2)(1 + r) 

Notice that R* is positive, whereas S* is negative, in accordance with 
results of (linear) stability analysis. (1~) On the other hand, this and all other 
properties to be discussed below are not specific to the truncation imposed 
to generate the potential (1). Higher order truncations lead to the same 
picture. 9 

The crucial, albeit standard assumption now is to consider the quanti- 
ties A, B, and C as analytical functions around the "tricritical point." Then, 
a straightforward consequence of the scheme is the classical behavior of the 
order parameter 

V~(_R - R*) 1/4 at S = S* and R > R* (6a) 

V ~ ] S * - S I  '/4 at R = R *  and S < S *  (6b) 

Obviously, the relevant "response functions" (specific heat-like variable, 
"susceptibilities," etc.) will exhibit classical behavior. 

9A comprehensive discussion of various truncations of the thermohydrodynamic equations 
and the numerical results found is given in Ref. 12. In this paper there is a wealth of 
information concerning hysteretic phenomena ~nd metastability. 
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2. TRICRITICAL BEHAVIOR IN BINARY MIXTURES HEATED 
FROM BELOW 

Comparison with experiment cannot be made yet, as the experimental 
work on either binary mixtures (t3) or homeotropic nematic layers (~4) is still 
underway. Computer simulation of the dynamics of binary mixtures is also 
in progress in our department, but no valid result is available at the 
moment. Thus merely for the record we shall list here some of the results 
predicted by our theory, focusing in detail only on the behavior of the 
susceptibility associated with the order parameter and the phase separation 
picture. 

We introduce the conjugate quantities to R and S, 

X = - (O~/OR)s, ,  (7a) 

V = - -  ( ~ f ~ l O g ) R , r  (8a) 
Thus we have 

X = (32/3)~r4r2V2/(1 + r 2) + 2V4/9 (7b) 

Y=  1447rSr(1 + r)(1 + r2)V 2 (8b) 

The expected behavior around the tricritical point is 

X ~ ( R  - R*) 1/2 along S = S*, and X ~ ] S *  - S] 1/2 at R = R* (9) 

Y follows the same power law. 
A specific heat-like variable is 

c = R(OX/OR )S,r = -- R(O2f~/OR2)s,r (10) 

From Eq. (1) we get 

_ 1024~rSr4R [ 64~r4r2(R - R*) 
c 9 ( 1 + r  2) [ 3 ( 1 + r ~ ;  

+ 144~rSr(1 + r)(1 + r2)(S - S*)] 

- I / 2  

which shows the expected ( - 1 / 2 )  singularity in (R - R*) or (S* - S). 
Another "response" function is (0 Y/OS)R. We have 

{ 0 Y ) 1442 q./.16F2(l _[_ F2)2(1 + /,)2 
2 

[ ~4r2( R - R * ) 6 4  ] 1/2 
. . . .  + 1447r8r(1 + r)(l + r2)(S * - S )  • 
r 2 -  1 

(12) 

(11) 
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For this variable the following behavior is predicted: 

( O Y / O S ) n ~ ( R -  R*) -1/2 along S = S* (13a) 

( O Y / O S ) n ~ ] S *  - S 1 - 1 / 2  along R = R* (13b) 

Yet another "response" function is (3 Y / O R ) s ,  whose singular behavior at 
the tricritical point is 

(0 Y / ~ R ) s ~ ( R  - R * ) - ' / 2  along S = S* 14a) 

( ~ Y / ~ R ) s ~ I S *  - S1-1/2 along R = R* (14b) 

For the "susceptibility" associated with the order parameter we merely 
consider that h is some external field, e.g., a preimposed flow along the 
horizontal, a preimposed pressure gradient in the vertical, a true external 
field (magnetic, electric) in a nematic layer or in a mixture response to it, 
etc. Then we have Xn,s = (~ V/~h)n,s,r together with (~qS/~ V) = h. From 
the use of this definition and the expression (1) or (2) it follows that 

XR,S-I = 5 V 4 -1- (8 /3 )V2[  (27/a)~r4(1 + r 2) - R] 

+ I(27/4)~r4 - R ( S  + 1 + S/r)](64/3)~r4r 2 (15) 

This susceptibility-like quantity has in fact been measured in various ways 
for the case of Rayleigh-B6nard convection in single-component liquid 
layers ~5'1~) and it seems easy to introduce in experiments with binary 
mixtures or homeotropic liquid layers. The expected singularities at the 
tricritical point are 

XR,sh..~o(R -- R*) -1 along S = S* (16a) 

XR,sh.~oIS* -- S[ -1 along R = R* (!6b) 

with coefficients readily obtainable from Eq. (15) or from the correspond- 
ing similar expression for different boundary conditions. 

We have also studied the behavior expected along continuous (soft- 
mode, second-order) transitions and estimated the critical slowing down. 
The results can be found in Ref. 2 and 4 and nice agreement exists with the 
only available data. (16~ We shall not dwell on this here. Let us now 
illustrate the "phase separation" picture provided by our potential (1)J ~ 

10 For those readers interested in currently fashionable problems, it is to be noted that the 
underlying equations that generate (1) constitute a natural extension of the Lorenz model to 
the two-component B~nard problem.(25 ) The first transition in the Lorenz model is second 
order, whereas here the two-component Lorenz model exhibits hard-mode excitations or 
continuous transitions depending on the parameters R and S. Exceptionally low values of 
the Lewis number  eliminate the first-order transitions, as shown in Refs. 11 and 17. 
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Fig. 1. "Phase separation" in the two-component Rayleigh-B6nard problem. The origin 
corresponds to the point where to its left no exchange of stabilities is expected. This indicates 
that transitions from the motionless state to a convective regime are expected to show 
hysteretic behavior, metastability, and overstable motions, which are the genuine properties of 
first-order (hard-mode) transitions, or suberitical instability as it is called in the fluid 
mechanics jargon. From the origin to its right a line of second-order (continuous, soft-mode) 
transitions develops. Along this line there is exchange of stabilities (critical slowing down). The 
figure corresponds to the value r = 0.01 (Lewis number for standard liquid mixtures). Thus S* 
gives, together with R*, the location of a "tricritical point." Region I corresponds to the 
motionless state, region II is the conveeting state, and in region III there is coexistence of 
motion with rest. The two heavy lines separating these regions are lines of first-order transition 
according to nonlinear analysis. 

Phase separation can be illustrated by plotting the variable Y, Eq. (8), 
in front of the Soret separation parameter,  S. Using Eq. (8b), we have 

Y = 144~rSr(1 + r)(1 + r 2) 

X 
[ 647r4rZ(R - R * )  

3(1 + r 2) 

J / 2  

+ 144~r8r(1 + r)(1 + r2)(S * - S )  (17) 

This is the relationship shown in Fig. 1 for the Lewis number  r = 0.01. By 
varying the Lewis number,  a three-dimensional picture is readily obtained. 
In  Fig. 1, two lines of first-order transition separate three regions: a 
disordered phase (the motionless region), an ordered (convective) phase, 
and the region of coexistence of mot ion and rest. These two lines of 
hard-mode  excitations end at the origins, at which, for S > S*, the continu- 
ous transition line develops. 
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R e c e n t l y ,  the  s tudy  p r e s e n t e d  h e r e  has  b e e n  e x t e n d e d  to the  case  of  

t i m e - d e p e n d e n t  ( l imit  cycle)  States of  the  f lu id  layer.  (18) 
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